Caspase Inhibition Extends the Commitment to Neuronal Death Beyond Cytochrome c Release to the Point of Mitochondrial Depolarization

نویسندگان

  • Mohanish Deshmukh
  • Keisuke Kuida
  • Eugene M. Johnson
چکیده

Nerve growth factor (NGF) deprivation induces a Bax-dependent, caspase-dependent programmed cell death in sympathetic neurons. We examined whether the release of cytochrome c was accompanied by the loss of mitochondrial membrane potential during sympathetic neuronal death. NGF- deprived, caspase inhibitor-treated mouse sympathetic neurons maintained mitochondrial membrane potential for 25-30 h after releasing cytochrome c. NGF- deprived sympathetic neurons became committed to die, as measured by the inability of cells to be rescued by NGF readdition, at the time of cytochrome c release. In the presence of caspase inhibitor, however, this commitment to death was extended beyond the point of cytochrome c release, but only up to the subsequent point of mitochondrial membrane potential loss. Caspase-9 deficiency also arrested NGF-deprived sympathetic neurons after release of cytochrome c, and permitted these neurons to be rescued with NGF readdition. Commitment to death in the NGF-deprived, caspase- 9-deficient sympathetic neurons was also coincident with the loss of mitochondrial membrane potential. Thus, caspase inhibition extended commitment to death in trophic factor-deprived sympathetic neurons and allowed recovery of neurons arrested after the loss of cytochrome c, but not beyond the subsequent loss of mitochondrial membrane potential.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective Role of Apigenin Against Aβ 25-35 Toxicity Via Inhibition of Mitochondrial Cytochrome c Release

Introduction: Cognitive dysfunction is the most common problem of patients with Alzheimer disease (AD). The pathological mechanism of cognitive impairment in AD may contribute to neuronal loss, synaptic dysfunction, and alteration in neurotransmitters receptors. Mitochondrial synapses dysfunction due to the accumulation of amyloid beta (Aβ) is one of the earliest pathological features of AD. Th...

متن کامل

Cytochrome C and Caspase-3/7 are Involved in Mycophenolic Acid-induced Apoptosis in Genetically Engineered PC12 Neuronal Cells Expressing the p53 Gene

Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil. This study designed to investigate the mechanism of cytotoxicity of MPA on the genetically engineered PC12 Tet Off (PTO) neuronal cells with p53 gene. Alamar Blue (AB) reduction showed concentration-dependent cytotoxicity of MPA on PTO cells with IC50 value of 32.32 ± 4.61 mM. The reactive oxygen species (ROS) generation...

متن کامل

Cytochrome C and Caspase-3/7 are Involved in Mycophenolic Acid-induced Apoptosis in Genetically Engineered PC12 Neuronal Cells Expressing the p53 Gene

Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil. This study designed to investigate the mechanism of cytotoxicity of MPA on the genetically engineered PC12 Tet Off (PTO) neuronal cells with p53 gene. Alamar Blue (AB) reduction showed concentration-dependent cytotoxicity of MPA on PTO cells with IC50 value of 32.32 ± 4.61 mM. The reactive oxygen species (ROS) generation...

متن کامل

Minocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation

Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...

متن کامل

Minocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation

Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 150  شماره 

صفحات  -

تاریخ انتشار 2000